Transductive Non-linear Learning for Chinese Hypernym Prediction
نویسندگان
چکیده
Finding the correct hypernyms for entities is essential for taxonomy learning, finegrained entity categorization, knowledge base construction, etc. Due to the flexibility of the Chinese language, it is challenging to identify hypernyms in Chinese accurately. Rather than extracting hypernyms from texts, in this paper, we present a transductive learning approach to establish mappings from entities to hypernyms in the embedding space directly. It combines linear and non-linear embedding projection models, with the capacity of encoding arbitrary language-specific rules. Experiments on real-world datasets illustrate that our approach outperforms previous methods for Chinese hypernym prediction.
منابع مشابه
Chinese Hypernym-Hyponym Extraction from User Generated Categories
Hypernym-hyponym (“is-a”) relations are key components in taxonomies, object hierarchies and knowledge graphs. While there is abundant research on is-a relation extraction in English, it still remains a challenge to identify such relations from Chinese knowledge sources accurately due to the flexibility of language expression. In this paper, we introduce a weakly supervised framework to extract...
متن کاملTransductive versions of the LASSO and the Dantzig Selector
Transductive methods are useful in prediction problems when the training dataset is composed of a large number of unlabeled observations and a smaller number of labeled observations. In this paper, we propose an approach for developing transductive prediction procedures that are able to take advantage of the sparsity in the high dimensional linear regression. More precisely, we define transduct...
متن کاملForeign Exchange Rate Prediction between Indonesian Rupiah and U.S. Dollar Using Transductive Learning
Purchasing goods or services produced in United States would force Indonesian company or investor to purchase U.S. dollar, and vice versa. The drastically changes of the foreign exchange rate between Indonesian rupiah and U.S. dollar would significantly affect the good’s price. Those facts motivated many studies focused on the exchange rate prediction. Various algorithms have been developed in ...
متن کاملNon-Linear Smoothed Transductive Network Embedding with Text Information
Network embedding is a classical task which aims to map the nodes of a network to lowdimensional vectors. Most of the previous network embedding methods are trained in an unsupervised scheme. Then the learned node embeddings can be used as inputs of many machine learning tasks such as node classification, attribute inference. However, the discriminant power of the node embeddings maybe improved...
متن کاملTransductive Learning of Structural SVMs via Prior Knowledge Constraints
Reducing the number of labeled examples required to learn accurate prediction models is an important problem in structured output prediction. In this paper we propose a new transductive structural SVM algorithm that learns by incorporating prior knowledge constraints on unlabeled data. Our formulation supports different types of prior knowledge constraints, and can be trained efficiently. Exper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017